
PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Diffusion reordering kinetics in lattice-gas systems: Time evolution of configurational entropy
and internal energy

Sieghard Weinketz
Institut für Computeranwendungen 1, Universita¨t Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany

~Received 3 February 1998!

The reordering kinetics of a diffusion lattice-gas system of adsorbates with nearest- and next-nearest-
neighbor interactions on a square lattice is studied within a dynamic Monte Carlo simulation, as it evolves
towards the equilibrium from a given initial configuration, at a constant temperature. The diffusion kinetics
proceeds through adsorbate hoppings to empty nearest-neighboring sites~Kawasaki dynamics!. The Monte
Carlo procedure allows a ‘‘real’’ time definition from the local transition rates, and the configurational entropy
and internal energy can be obtained from the lattice configuration at any instantt by counting the local clusters
and using theC2 approximation of the cluster variation method. These state functions are then used in their
nonequilibrium form as a direct measure of reordering along the time. Different reordering processes are
analyzed within this approach, presenting a rich variety of behaviors. It can also be shown that the time
derivative of entropy~times temperature! is alwaysequal to or lower thanthe time derivative of energy, and
that the reordering path is always strongly dependent on the initial order, presenting in some cases an ‘‘in-
variance’’ of the entropy function to the magnitude of the interactions as far as the final order is unaltered.
@S1063-651X~98!02507-0#

PACS number~s!: 05.70.Ln, 68.35.Fx, 82.20.Mj, 64.60.Ht
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I. INTRODUCTION

Kinetic lattice-gas models with stochastic interactio
have been widely used in the study of the diffusion of ads
bates over metallic surfaces@1–11#, where a low activation
energy makes the diffusion process very fast with respec
processes like desorption or adsorption@12#. These studies
were mostly concerned with diffusion as a mass transp
due to a concentration gradient@2–4#, in obtaining diffusion
coefficients within an equilibrium condition@5–9#, or in the
case of diffusion kinetics driven by an external field@10,11#.
A rather different issue, however, is the reordering kinet
of an adsorbed layer or lattice gas as it converges to
equilibrium from an arbitrary initial order, and this leads
the question of how the reordering process can be expre
into the order parameters and the~nonequilibrium! thermo-
dynamic state functions. A similar problem was studied
Smith and Zangwill@13# for the reordering kinetics of a bi
nary lattice gas in two dimensions, using a time-depend
quasichemical approximation.

A good knowledge of the reordering kinetics of adso
bates will be important when understanding its relation to
time scales of other processes like desorption or adsorp
of atoms and molecules, that is normally treated within
assumption that diffusion is sufficiently rapid so that the a
sorbate layer can be considered to be instantaneously in e
librium @14–16#. The equilibrium state of lattice gases can
properly described by different numerical-analytical@17–19#
or Monte Carlo methods@16,20–22#.

The equilibrium state of a thermodynamic system is
definition the minimum of the Helmholtz free energyF @23#:

F5E2TS,

whereE is the internal energy andS is the configurational
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entropy. By assuming thatF converges to its minimum
monotonicallyfrom its initial value, we may find for its time
derivative,

]F

]t
5

]E

]t
2T

]S

]t
<0,

which leads to the constraint

]E

]t
<T

]S

]t
. ~1!

In this way that we can speak of anentropy dominatedre-
gime, wheneverTu]S/]tu,u]E/]tu, or otherwise of anen-
ergy dominatedregime, and the latter will occur whenboth
state functions are decreasing with time. There is one si
tion that may occur whenever the system is near equilibriu
with ]F/]t.0, that is,

]E

]t
.T

]S

]t
. ~2!

In this work we will study, as a simple system that c
exhibit reordering kinetics, the lattice-gas model of ads
bates over a square lattice with nearest- and next-nea
neighbor interactions between the adsorbates, and wher
diffusion of the adsorbates occurs by thermally activa
‘‘jumps’’ from filled to empty surface sites at a consta
temperature~thermal bath!, following a Kawasaki dynamics
The jump rates depend directly on the activation energies
hopping as a function of the differences between the ini
and final energies for the jumps.

The time evolution of the system can be evaluated wit
a dynamic Monte Carlo procedure@25,26#, considering the
stochastic process as a heterogeneous Poisson process
posed by all the localpossible eventspresent in the system a
159 © 1998 The American Physical Society
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160 PRE 58SIEGHARD WEINKETZ
a given instant. Moreover, from a direct counting of the lo
cluster correlations, the entropy and the energy can be
rectly evaluated at any instantt with the use of the formulas
from the C2 approximation of the cluster variation metho
@18#, as the ordering process proceeds from the initial
dered states towards the equilibrium states. Two impor
cases to be addressed here are the ones with energy p
eters that correspond to thec(232) ~or ‘‘checkerboard’’!
@16,19–21# and p(231) @9,11# equilibrium states~Fig. 1!,
which are both ordered states with corresponding zero
tropy. In this way we can show that the ordering kinetics w
depend not only on the final state but also on the initial ord
being eventually independent from the energy parameter
long as the equilibrium state is unchanged. Finally, the c
straint derived above@Eq. ~1!# for the relation between the
time derivatives of entropy and internal energy can be v
fied in the simulations.

The diffusion model and the dynamic Monte Carlo proc
dure are described in Sec. II, and the internal energy
configurational entropy formulas based on theC2 approxi-
mation of the cluster variation method, as well as the clus
fractions used in their derivation are presented in Sec. III
Sec. IV we will present some examples of reordering p
cesses, showing the interplay between the two thermo
namic functions, with different energy parameters and ini
configurations. The discussion will be limited to the ha
coverage case, and to repulsive energies, for that is w
most interesting phase transitions can be observed@20,21#.
Final discussions and conclusions are presented in Sec.

II. DIFFUSION MODEL
AND MONTE CARLO PROCEDURE

The solid surface is represented by a square lattice w
Ns sites and periodic boundary conditions, where each
may be either empty or occupied by an adsorbate. The t
number of adsorbates on the surface is given byNA , defining
a surface coverageu5NA /Ns . Only diffusion events~hop-
ping! of an adsorbate to empty nearest-neighboring s
~Kawasaki dynamics! are included in the model; all othe
processes such as desorption or adsorption processes a
nored.

The equilibrium state that is to be reached by the diffus
process can be characterized by two parameter ra
D l /kBT andDd /kBT, whereD l andDd are, respectively, the
nearest-neighbor~lateral! and next-nearest-neighbor~diago-
nal! interaction energies between the adsorbates~repulsive
energies positively defined!, kB is the Boltzmann constant

FIG. 1. The ordered statesc(232) ~a! andp(231) ~b!, corre-
sponding to zero entropy values.
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andT is the absolute temperature. By assuming an Arrhen
form for the hopping rate, two further parameters are need
the pre-exponential factor for diffusion,n, and the activation
energy in the absence of neighbor interactions,D, and there-
fore the hopping rates for an adsorbate between two ne
boring sites with final energy differences labeled byi j are
given by

r diff
i j 5n exp@2~D1 iD l1 j Dd!/kBT# ~3a!

if iD l1 j Dd.0, and

r diff
i j 5n exp~2D/kBT! ~3b!

if iD l1 j Dd<0, wherei and j are, respectively, thediffer-
encesin the numbers of nearest and next-nearest neighb
for the adsorbate between its initial and final sites (23< i
<3,24< j <4), following the physicochemical argumen
that the energy barrier the adsorbate effectively ‘‘feel
when jumping onto a lower energy site is justD ~Fig. 2!
@27#. By ignoring the kinetics involved, the transition rate
~3a! and~3b! become equivalent to the rules of the Metrop
lis algorithm @24#, what by analogy guarantees that the sy
tem will converge after sufficient computing time to an eq
librium state.

The time evolution of the system can be obtained with
the dynamic Monte Carlo procedure@25,26# from the local
transition rates by considering a heterogeneous Poisson
cess@25,28#. Therefore, for a given configuration at an in
stantt, aglobal transition ratefor the next diffusion event is
given by

r tot5(
i j

Ndiff
i j r diff

i j , ~4!

whereNdiff
i j are the numbers~multiplicities! of the possible

diffusion eventswith environment dependence labeled byi j .
The next event to occur is then randomly chosen out o
weighted list of all theNtot5( i j Ndiff

i j existing possibilities
@30#. This diffusion event is then performed, and the surfa
lattice, the list of possible events, and the multiplicitiesNdiff

i j

are updated, and the timet is incremented according to

FIG. 2. Barrier heights~activation energies! for adsorbate jumps
between sites of different initial and final energies.D is the barrier
height in the limit of zero coverage, andiD l1 j Dd is the difference
in total energy for the adsorbate between the initial and final si
Note that the barrier height for equal or lower energy final sites
just D @Eq. ~3!#.
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t inc5~2 lnr!
1

r tot
, ~5!

wherer is a nonzero random number between 0 and 1@31#.
The sequence of lattice configurations generated in this
is a representative solutionof the time evolution of the ki-
netic lattice-gas model, and any system variable can be
rectly measured from the lattice configuration.

From the transition rates in Eq.~3!, and from Eqs.~4! and
~5!, it is possible to see that the time increment will be
ways inversely proportional ton exp(2D/kBT), and that this
term will be constant throughout the whole process as l
asT is kept constant. Therefore, for practical reasons an
order to evaluate the influence of adsorbate interaction
the reordering kinetics, the time evolution will be measur
in units of 1/@n exp(2D/kBT)#.

III. CONFIGURATIONAL ENTROPY AND INTERNAL
ENERGY IN THE C2 APPROXIMATION

The configurational entropy and the internal energy c
be directly obtained from the lattice configuration at a giv
instantt. The internal energy is the simplest case, and it
be directly obtained from the probabilitiesy1 that two near-
est neighboring sites are occupied, andw1, that two next-
nearest-neighboring sites are occupied~Table I!, so that for a
lattice with Ns sites the internal energy~per unit site! is

E52~y1D l1w1Dd!, ~6!

where the binding energy term was ignored as it is irrelev
for the kinetics.

The configurational entropy, on the other hand, relies
using an appropriate approximation that can describe the
cal order correlations of a lattice-gas system at a given c
erage, temperature, and interaction termsin the equilibrium
state. This can be achieved by the cluster variation meth
~CVM! @17,18#, which gives a series of cluster approxim
tions for the configurational entropy of an infinite lattice as
function of the basic cluster fractions, with the precision
the approximation depending on the size of the basic clus
their geometry and the way they are used to construc
infinite lattice. The equilibrium state can then be found as
minimum of the free energy by varying self-consistently t
cluster probabilities@32#. In a previous work we found tha
the C2 approximation of Kikuchi and Brush@18# was suffi-
ciently precise to describe thec(232) ordering transition at
half coverage by comparing to Monte Carlo simulations@16#.
By following the procedure outlined for theB2 approxima-
tion in Ref. @18#, we arrive at the configurational entrop
~per unit site! as

S5kBH(
i

k iqi ln qi1(
i

t i t i ln t i2(
i

b i yi ln yi

2(
i

h ihi ln hi J , ~7!

where theqi , t i , yi , and hi cluster probabilities are pre
sented in Table I, with their respective multiplicities or sym
ay
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metry factorsk i , t i , b i , andh i . This formula will then be
used here for thenonequilibriumentropy.

The yi , qi , and t i fractions can be obtained in differen
ways as geometrical sums over thehi clusters by considering
their geometries, and the same is valid forw1 in Eq. ~6!. The
cluster probabilities satisfy the normalization constraints

TABLE I. Basic (hi) and secondary cluster (qi , t i , and yi),
with their respective multiplicities (h i , k i , t i , andb i) used in the
C2 approximation of the cluster variation method. Thew1 fraction
does not enter the entropy formula, but is used in the energy ca
lation.
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(
i

h ihi5(
i

k iqi5(
i

t i t i5(
i

b i yi51,

and also

y11y25x15u.

For the cluster fractions at a given instantt, the lattice is
scanned in the two perpendicular directions and each of
2Ns (332) clusters is then recognized and counted as
of the hi figures of Table I~accounting also for their sym
metries!, and thehi fractions are then obtained by dividin
the corresponding figure counts by 2Nsh i . The qi , t i , yi ,
andw1 fractions are obtained as geometrical sums over
hi fractions, and finallyE andS are obtained with the use o
formulas ~6! and ~7!. The direct use of Eq.~7! can lead to
errors in the entropy evaluation, as it was in fact devised
infinite lattices, and especially in the neighborhood of t
highly asymmetricalp(232) orders. A numerical solution
employed here was to calculate the entropy separately f
the cluster counts for each direction of the lattice, and t
avoids the negative values in the entropy.

An important issue to be concerned with here is that
the validity and significance of the configurational entro
~7!. The entropy is a well defined function in the equilibriu
state, and its derivation in Ref.@18# was done by estimating
the number of different ways that anNs-site lattice can be
built with the use of the given cluster probabilities. Th
means that an entropyS will correspond to a given lattice
configuration as long as this cluster is representative o
ensemble of lattices built with these cluster probabilit
~Gibbs-like description!.

This should not be very severe in our case, as we
dealing mostly with local reordering processes that do
involve mass transport. Furthermore, the entropy can alw
be seen as a function that measures the degree disorder
system as a function of its local probabilities or correlatio
as in the approach given by the information theory@33#
~Boltzmann-like description!. In this way, the entropy is a
consistent function of the cluster probabilities that will co
verge to its equilibrium value as the stochastic system c
verges to the equilibrium.

IV. SIMULATION OF REORDERING PROCESSES

The simplest case that can be studied within the proced
outlined above is the disordering process from an initia
ordered state to a final random state, due to the absenc
interactions between the adsorbates (D l5Dd50). In Fig. 3
we show the convergence of the entropy towards
maximum value ofS5kB ln 2, starting from the two ordered
states shown in Fig. 1:c(232) ~solid line! and p(231)
~dashed line!, for a system at half coverage. For this and
the following figures in this work we use, unless othe
wise stated,Ns54003400,u50.5, andT5300 K, with the
Boltzmann constantkB50.861731024 eV/K. The time is
measured in units of 1/@n exp(2D/kBT)#, as previously men-
tioned. The code was written in PASCAL language and w
run on Sun ULTRA 1 workstations.

It can be seen that both curves show saturationlike beh
ior for S, but noting that the convergence from the initi
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c(232) order is quite faster. This comes from the restricti
that the adsorbates may only jump to empty neare
neighboring sites, which means that an adsorbate in an
dered p(231) row has just two hopping possibilities
whereas an adsorbate in thec(232) order has four possi
bilities ~Fig. 1!, which allows a faster destruction of th
original order in the initial stages. This situation is the on
example within this model of a thermodynamically clos
system, due to its constant internal energy, implying that
the change upon the free energy comes from the entrop

A rather different situation occurs forD l52Dd50.1 eV,
where each of the interaction terms would individually le
to either thec(232) or p(231) orders. This is shown in
Fig. 4 for both the internal energies~upper set of curves! and
entropies~lower set!, where att50 the system is posed int
a c(232) ~thick solid!, p(231) ~thin solid!, or random dis-
order state~dashed line!, and all the curves in each set co
verge to same values. It can be seen that the overall t
scale is rather larger than that of Fig. 3. Again, the conv
gence from the initial c(232) is faster than that of
p(231) during the initial stages, for the same reason as w
the previous case, but a direct comparison for the curve w
initial random order cannot be made.

The time derivatives of the curves in Fig. 4 were obtain
with the use of a Savitzky-Golay smoothing procedure@29#
and are presented in Fig. 5 for each of the initial orders~the
solid lines correspond here to the internal energy, and
dashed lines to the entropy!. It can be seen that condition~1!
is fulfilled, which can be interpreted as if the change in
ternal energy ‘‘pulls’’ the change in entropy. For the larg
values oft, when the system is close to equilibrium, the tw
curves practically superpose and follow the same osc
tions, satisfying thus condition~2!. The oscillations arise
from the stochastic processes involved here, and are am
fied by the limited size of the lattice. Note also the diffe
ences in vertical scales for the three cases.

An important case to be considered here and freque

FIG. 3. Time evolution of the configuration entropy in the a
sence of adsorbate-adsorbate interactions (D l5Dd50), in units of
n exp(2Dl /kBT), for initial states in thec(232) ~solid! and
p(231) orders~dashed line!. Both curves converge to the platea
S/kB5 ln 2.
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studied within the literature is thec(232) equilibrium order
@3–8#. In Fig. 6 we present the entropy evolution for syste
with an initial p(231) order and lateral interaction energi
of D l50.1 ~solid!, 0.2 ~dashed!, and 0.4 eV~dotted line!,
with Dd50 (Ns58003800), that correspond to th
c(232) equilibrium order@16#. A further curve withD l
50.05 eV is added~thick solid line, with Ns52003200),

FIG. 4. Time evolution of the entropy~lower set! and internal
energy functions~upper set! for D l50.1 eV andDd50.05 eV, for
the lattices at initial states ofc(232) ~thick solid!, p(231) ~thin
solid!, and randomly disordered~dashed line!. T5300 K, as in all
the subsequent figures.

FIG. 5. Time derivatives of the entropy~solid! and internal en-
ergy functions~dashed lines! of Fig. 4, for the randomly disordered
c(232) andp(231) initial states~top to bottom!.
s
leading to a slightly different equilibrium state, where th
c(232) order is present but not dominant as in the oth
curves@34#. The time scale in the time axis is logarithmi
accounting for the fact that the convergence to thec(232)
equilibrium state looks like a long-term power-law deca
and allowing also one to detail the processes in their ini
stages. It can be seen that the threec(232) curves practi-
cally collapse into a single one in both the rising phase, fr
the original zero-entropy state to close to the maxima, a
also in the decay phase towards zero entropy, except for t
slightly different maxima and some variations for larg
times, that are related to the maxima~an inset is included to
detail this region!. The breaks att*53103 are related to the
finite size of the lattice. The fourth curve grows with th
others in the initial stages, but then arrives at a sligh
higher entropy maximum, and finally converges to its ow
equilibrium state.

The relative insensibility observed in the curves in Fig
to the magnitude of the interaction energies implies that
order destruction and reconstruction mechanisms acting
depend principally on adsorbate jumps with equal transit
rates, as a composed process will usually proceed with
slowest rate. From Eq.~3! this means adsorbate jumps
equal and lower energy positions. The initial rise in the e
tropy corresponds to the destruction of the origin
p(231) order, and Fig. 7~a! describes the probable mech
nism occurring at the very initial stages. The simplest eve
given here area and b, both with an energy difference of
2D l and thus a transition has a rate ofn exp(2D/kBT), and
their reverse processes have the raten exp@2(D1Dl)/kBT#.
After the jump ina, the adsorbate may follow the corrido
upwards (c) or downwards (c8), with respective energy dif-
ferences1D l and 12D l ~once b occurred!, which means
that it is in a trapped position, and also avoiding jumps to
neighboring empty positions. The single occurrence ofa

FIG. 6. Time evolution of entropy from an initialp(231) state
for Dd50 and D l50.1 ~solid!, 0.2 ~dashed! and 0.4 eV~dotted
line!, with closely matched curves that converge to thec(232)
ordered state. The thick solid curve shows the results forD l

50.05 eV, which converges to a partialc(232) order.
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does not enhance the possibilities of eventd to occur, but it
makes much more improbable for its reverse process, an
this way a ‘‘checkerboard’’ order is rapidly formed and st
bilized in the local neighborhood@13#. This basic mechanism
is also valid for the non-c(232) case, but its further diver
gence means that in this case thec(232) domains are not so
readily formed and stable as in the combined curves.

The c(232) state is twofold degenerate, and this mea
that the entropy maxima represent the points where ther
also a maximum competition between the two differe
modes, whereas the steady decay of entropy implies that
of them is gradually becoming dominant. A possible mec
nism for the decay phase in thec(232) curves is shown in
Fig. 7~b!, where a ‘‘block’’ of the minority mode is sur-
rounded by the dominant one~dashed square!. The reorder-
ing process should occur with more probability at the b
ders, where eventsa and b and d may occur quite rapidly,
since they involve no energy differences, but eventc may
occur with the highest rate only afterb or d happened, and
any of these will also help to stabilize the lattice further o
The whole process is in fact independent ofD l , and the
instantaneous decay rate will depend on the total bound
perimeter between the two clusters, and hence the power
behavior in the decay phase@Fig. 8~a!#. Of course, we may
not ignore the diffusion of adsorbates along the defects of
c(232), until they are ‘‘annihilated’’ at the borders@5,8#,
and this processis dependenton the interaction energies, bu
it is in fact a complementary process, that does not contrib
directly to the lattice order as measured by the entropy fu
tion. The inclusion of a diagonal term might not be signi
cant, as far asDd,0, as can be inferred from Fig. 7.

Figure 8~a! presents the results for the entropy~dashed
line! and internal energy~solid line! for the caseD l50.2 eV
of Fig. 6, and a logarithmic scale was used in both axes
order to detail the long-time decay~the divergence at the en
is a size effect!. Both curves run approximately parallel fo
t*10, with a power-law-like behavior;at2b @35#. It can be
seen from this plot that condition~1! is fulfilled. Figure 8~b!
shows the time evolution of the fractionst2t2 ~also t5t5,
dotted line!, t3t3 ~solid line!, andt4t4 ~dashed line! given in

FIG. 7. Probable mechanisms for the common behavior of
curves in Fig. 6, corresponding to the initial rise in entropy due
the destruction of thep(231) order~a! and the homogenization o
different c(232) domains~b!. The black and white circles repre
sent, respectively, the occupied and empty sites, and the cro
represent occupied sites after a given event has occurred. Exp
tion for the mechanisms is given in the text.
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Table I, for the same run. Thet3 and t4 figures represent
respectively, thep(231) andc(232) orders, while thet2
~and t5) figures represent the immediate disordering state
can be seen that there is a crossover of thet3 andt4 curves at
around the entropy maximum, after whicht4 is dominant,
and also that the intermediate statest2 and t5 have a small
maximum at exactly this point, but that thep(231) order is
still present to some extent up to very large times.

A final case of interest, related to the situations presen
above, is the inverse case, i.e., the evolution from an ini
c(232) state towards thep(231) order @9,11#. The time
evolution of the entropy is shown in Fig. 9 forDd50.1
~solid!, 0.2 ~dotted!, 0.3 ~dashed!, and 0.4 eV~dot-dashed
line!, andDd50, corresponding to equilibriump(231) or-
ders. A further curve withDd50.05 eV is also added~thin
solid line!, for comparison, but corresponding to a no
p(231) order in the equilibrium. The first four curves gro
together from the initial zero entropy up to a common ma
mum at t.0.2, and then decay yet together untilt.15,
where they start to diverge due to effect of the differe
interaction energies, showing that further reordering
comes more difficult the larger the magnitude of the inter
tion energies is, and they are expected to converge to
ordered state in further times~out of scale!. The partial co-
incidence of the curves means, roughly speaking, that th
different ordering phases are present here, and where the
two are energy independent. The non-p(231) curve has an
identical behavior up to the common maximum, but th
falls to its own equilibrium state. Just to note, a main diffe
ence between thec(232) and p(231) orders is that the

e
o

ses
na-

FIG. 8. ~a! Power-law-like behavior for the internal energ
~solid! and entropy functions~dashed line! for the caseD l50.2 eV
of Fig. 6. ~b! Time evolution of the cluster probabilitiest2t2 ~or
t5t5, dotted!, t3t3 ~solid!, andt4t4 ~dashed line! for the same pro-
cess as~a!.
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first one is twofold, whereas the second one is fourfold
generate, and therefore a much slower convergence migh
expected.

A possible mechanism for the initial disordering phase
shown in Fig. 10~a!, where eventa can occur as a rapid
process~energy difference of24Dd), but its inverse even
(a8) as a very slow one. Oncea has occurred, bothb andb8
become less probable, with an energy increase of1Dd , but
favoring c, and thus allowing the formation of loca
p(231) domains, without an explicit energy dependen
The next process should be the homogenization between
mains differing by a translational phase, as shown in part~b!.
Here, eventsa, b, andc will occur with the same rate, eve
though eventa is not favorable to the order reconstructio
but once eventc occurs, for instance,d ~that otherwise
would be similar toa) is now less probable (1Dd), and thus
e is favored~zero energy!. A combination of the mechanism
of Figs. 10~a! and 10~b! should be responsible for the de
struction of the originalc(232) order and the buildup o
small p(231) domains, through the maxima of the curv
and until they start to diverge att.10 @noting that the non-
p(231) curve starts to diverge after their common ma
mum#.

The divergence of the curves after their breaking po
means that the reordering will now start to depend stron
on the value of the interaction energies, and it is consiste
slower with increasing energy. The reordering proc
should now overcome the mismatch between domains of
ferent orientation, as shown in Fig. 10~c!, where we may
assume that the domain at the left will expand towards
right. In the simplest mechanism that can be visualized h
eventa may occur with a rate;exp(22Dd /kBT), and it may
be followed by a second jump,b, that will effectively extend
the left domain with the maximum rate. Another mechani
is given by eventsc andd, but with much slower rates~en-
ergy differences of14Dd and2Dd).

FIG. 9. Time evolution of entropy for an initialc(232) order
with D l50 andDd50.1 ~solid!, 0.2 ~dotted!, 0.3 ~dashed!, and 0.4
eV ~dot-dashed line!, leading to ap(231) equilibrium state, and
Dd50.05 eV ~thin solid line!, leading to partialp(231) equilib-
rium.
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V. CONCLUSIONS AND FINAL REMARKS

In this work we have analyzed the reordering kinetics
lattice-gas systems with nearest- and next-nearest-neig
interactions between adsorbates on a square lattice and
chastic hopping~Kawasaki dynamics!, from initial pre-
defined ordered states towards the equilibrium, using a
namic Monte Carlo procedure, so that a ‘‘real’’ time can
evaluated from the local transition rates and the numbe
possible events in the system at each instant. From the
tem configuration we can calculate directly the internal e
ergy, and the configurational entropy within theC2 approxi-
mation of the cluster variation method. Within this approa
the time variation of both state functions can be direc
assessed and thus used to characterize the ordering co
gence. The lattice-gas model serves thus as a simple sy
where the reordering kinetics can be followed and charac
ized by the state functions in nonequilibrium. From a simp
argument on the Helmholtz free energy, we find that
decrease in the internal energy should always be lower t
the decrease in entropy, which is confirmed by the simu
tions. The discussion here was limited to repulsive energ
and half coverage, which were used due to richness of ph
transitions that this domain can present in equilibriu
@20,21#.

It was shown that the reordering kinetics varies stron
with the interaction energies, and that the reordering p

FIG. 10. Possible mechanism for the ordering kinetics in Fig
corresponding to the destruction of the initialc(232) order~a!, the
homogenization of different domains of thep(231) order with the
same orientation~b!, and finally the homogenization of domain
with different orientation~c!. Mechanism~c! is dependent on the
magnitude of the interaction energies. The symbols used here
the same as in Fig. 7.
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may depend more on the initial and final orders of the p
cess than on the magnitude of the interaction energies th
selves. From the entropy function and the order parame
we can also identify different ordering phases correspond
to the destruction of the initial order and the buildup of t
equilibrium state. Two extreme cases presented here
those where the system evolves from ap(231) state to-
wards ac(232) state~Fig. 6!, and the opposite process~Fig.
9!, where we can perceive an ‘‘insensibility’’ of the entrop
function to the magnitude of the interactions as long as
equilibrium state is unchanged, and the different orderi
disordering phases are well characterized in the entr
variation. At this point a comparison with Smith and Zan
will @13# is relevant: they observe in their calculations f
ordering processes that the short-range order converges
rapidly to a quasiequilibriumstate, after which the long
range order converges exponentially and both orders rela
their equilibrium state. This can be interpreted in our syst
as the initial formation of the local domains and their sub
quent ‘‘annealing’’ into the final order. The model of Re
@13# is, despite its elegance, limited by the use of a q
sichemical approximation, that can only account for lo
correlations and cannot describe properly thec(232) and
p(231) ordered states@16#, and thus the advantage of th
Monte Carlo method. On the other hand, entropy was cho
as a single function that will characterize the order of
system as a whole.

The reordering kinetics cannot be directly related to
diffusion kinetics in the equilibrium, but this does not me
that diffusion is absent or unimportant for reordering. In fa
r
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as discussed for thec(232) case, the diffusion within the
ordered domains is important as a complementary proc
for ‘‘defect’’ transportation that does not necessarily chan
the order measure, while the reordering process itself
occur at the borders of the domains. The cases studied
included well defined ordering states, like thec(232) and
p(231), that are perhaps rather ‘‘artificial,’’ but they allow
the discussion of some possible mechanisms for the kine
of order formation and destruction, and how these will
expressed by the state functions.

Even though the analysis presented here is limited du
the finiteness of the systems studied, its related fluctuati
and also on other factors like the definition of the hoppi
rules and the simplicity of cases studied, the Monte Ca
procedure outlined above can be fairly extended to more
alistic cases for the reordering kinetics of an adsorbate la
and also its relation to other nonequilibrium processes wh
competing time scales are involved, like adsorption, deso
tion and surface reactions, or external effects like vary
temperatures or applied external fields.
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