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Diffusion reordering kinetics in lattice-gas systems: Time evolution of configurational entropy
and internal energy
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The reordering kinetics of a diffusion lattice-gas system of adsorbates with nearest- and next-nearest-
neighbor interactions on a square lattice is studied within a dynamic Monte Carlo simulation, as it evolves
towards the equilibrium from a given initial configuration, at a constant temperature. The diffusion kinetics
proceeds through adsorbate hoppings to empty nearest-neighboringksiteasaki dynamigs The Monte
Carlo procedure allows a “real” time definition from the local transition rates, and the configurational entropy
and internal energy can be obtained from the lattice configuration at any in&taicbunting the local clusters
and using theC, approximation of the cluster variation method. These state functions are then used in their
nonequilibrium form as a direct measure of reordering along the time. Different reordering processes are
analyzed within this approach, presenting a rich variety of behaviors. It can also be shown that the time
derivative of entropy(times temperatupes alwaysequal to or lower tharthe time derivative of energy, and
that the reordering path is always strongly dependent on the initial order, presenting in some cases an “in-
variance” of the entropy function to the magnitude of the interactions as far as the final order is unaltered.
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I. INTRODUCTION entropy. By assuming thaE converges to its minimum
monotonicallyfrom its initial value, we may find for its time

Kinetic lattice-gas models with stochastic interactionsderivative,
have been widely used in the study of the diffusion of adsor-
bates over metallic surfac¢s—11], where a low activation f_ E_ S
energy makes the diffusion process very fast with respect to gt ot
processes like desorption or adsorptidr2]. These studies
were mostly concerned with diffusion as a mass transporwhich leads to the constraint
due to a concentration gradidi®—4], in obtaining diffusion
coefficients within an equilibrium conditiof5—9], or in the JE __9S
case of diffusion kinetics driven by an external figid,11]. ot ot
A rather different issue, however, is the reordering kinetics
of an adsorbed layer or lattice gas as it converges to th#n this way that we can speak of amtropy dominatede-
equilibrium from an arbitrary initial order, and this leads to gime, wheneveiT|3S/dt|<|JE/dt|, or otherwise of aren-
the question of how the reordering process can be expressedgy dominatedegime, and the latter will occur wheyoth
into the order parameters and ttreonequilibrium thermo-  state functions are decreasing with time. There is one situa-
dynamic state functions. A similar problem was studied bytion that may occur whenever the system is near equilibrium,
Smith and Zangwil[13] for the reordering kinetics of a bi- with dF/dt=0, that is,
nary lattice gas in two dimensions, using a time-dependent
quasichemical approximation. JE _JS @

A good knowledge of the reordering kinetics of adsor- gt at”
bates will be important when understanding its relation to the
time scales of other processes like desorption or adsorption In this work we will study, as a simple system that can
of atoms and molecules, that is normally treated within theexhibit reordering kinetics, the lattice-gas model of adsor-
assumption that diffusion is sufficiently rapid so that the ad-bates over a square lattice with nearest- and next-nearest-
sorbate layer can be considered to be instantaneously in equieighbor interactions between the adsorbates, and where the
librium [14—-16. The equilibrium state of lattice gases can bediffusion of the adsorbates occurs by thermally activated
properly described by different numerical-analyticif-19  “jumps” from filled to empty surface sites at a constant
or Monte Carlo methodgl6,20-22. temperaturéthermal bath, following a Kawasaki dynamics.

The equilibrium state of a thermodynamic system is byThe jump rates depend directly on the activation energies for
definition the minimum of the Helmholtz free energyf 23]: hopping as a function of the differences between the initial
and final energies for the jumps.

The time evolution of the system can be evaluated within
a dynamic Monte Carlo proceduf@5,26], considering the
stochastic process as a heterogeneous Poisson process com-
whereE is the internal energy an8 is the configurational posed by all the locgbossible eventgresent in the system at
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FIG. 1. The ordered state$2x2) (a) andp(2Xx 1) (b), corre-
sponding to zero entropy values.

. . . . FIG. 2. Barrier heightgactivation energiesfor adsorbate jumps
a given instant. Moreover, from a direct counting of the IOCaIbetween sites of different initial and final energidsis the barrier

cluster correlations, thg entropy and the energy can be dheight in the limit of zero coverage, and,+ jA4 is the difference
rectly evaluated at any instanwith the use of the formulas i, total energy for the adsorbate between the initial and final sites.
from the C, approximation of the cluster variation method Note that the barrier height for equal or lower energy final sites is
[18], as the ordering process proceeds from the initial orjust A [Eq. (3)].

dered states towards the equilibrium states. Two important

cases to be addressed here are the ones with energy paragdT is the absolute temperature. By assuming an Arrhenius
eters that correspond to th2Xx2) (or “checkerboard’)  form for the hopping rate, two further parameters are needed,
[16,19-2] and p(2Xx 1) [9,11] equilibrium stategFig. 1),  the pre-exponential factor for diffusiom, and the activation
which are both ordered states with corresponding zero erenergy in the absence of neighbor interactiahsand there-
tropy. In this way we can show that the ordering kinetics will fore the hopping rates for an adsorbate between two neigh-

depend not only on the final state but also on the initial orderporing sites with final energy differences labeled ipyare
being eventually independent from the energy parameters afiven by
long as the equilibrium state is unchanged. Finally, the con-

straint derived abovéEq. (1)] for the relation between the rdig=v exd —(A+iA;+jAy)/ksT] (3a)
time derivatives of entropy and internal energy can be veri-
fied in the simulations. if iAj+jAy4>0, and
The diffusion model and the dynamic Monte Carlo proce- i
dure are described in Sec. Il, and the internal energy and rdir=v exp(—A/kgT) (3b)

configurational entropy formulas based on tbe approxi- . . ) . . . .

mation of the cluster variation method, as well as the clustell 141+ 144=<0, wherei andj are, respectively, theiffer-
fractions used in their derivation are presented in Sec. IlI. IfNCeSIN the numbers of nearest and next-nearest neighbors
Sec. IV we will present some examples of reordering pro{OF the adsorbate between its initial and final sites3i
cesses, showing the interplay between the two thermody=3:—4<i<4), following the physicochemical argument
namic functions, with different energy parameters and initialhat the energy barrier the adsorbate effectively “feels
configurations. The discussion will be limited to the half- Wnen jumping onto a lower energy site is just(Fig. 2)
coverage case, and to repulsive energies, for that is whe 7]. By ignoring the kmgncs involved, the transition rates
most interesting phase transitions can be obsef2621]. (3a) and(3b) become equivalent to the rules of the Metropo-

Final discussions and conclusions are presented in Sec. Vs algorithm[24], what by analogy guarantees that the sys-
tem will converge after sufficient computing time to an equi-

librium state.
II. DIFFUSION MODEL The time evolution of the system can be obtained within
AND MONTE CARLO PROCEDURE the dynamic Monte Carlo proceduf@5,26 from the local

The solid surface is represented by a square lattice witffansition rates by considering a heterogeneous Poisson pro-
N, sites and periodic boundary conditions, where each sit§SS[25,28. Therefore, for a given configuration at an in-
may be either empty or occupied by an adsorbate. The tot&antt, aglobal transition ratefor the next diffusion event is
number of adsorbates on the surface is givelNRy defining ~ 9iven by
a surface coveragé=N,/Ng. Only diffusion eventghop-
ping) of an adsorbate to empty nearest-neighboring sites Mot= > Nidiiﬁrgiﬁ, (4)
(Kawasaki dynamigsare included in the model; all other ij
processes such as desorption or adsorption processes are igi{ . o _
nored. where N{g are the numbergmultiplicities) of the possible

The equilibrium state that is to be reached by the diffusiordiffusion eventsvith environment dependence labeledipy
process can be characterized by two parameter ratiod, he next event to occur is then randomly chosen out of a
A, /ksT andA4/kgT, whereA, andAg are, respectively, the weighted list of all theNy,==i;N{ existing possibilities
nearest-neighboflatera) and next-nearest-neighbédiago-  [30]. This diffusion event is then performed, and the surface
nal) interaction energies between the adsorbatepulsive lattice, the list of possible events, and the multiplicithé;
energies positively definedkg is the Boltzmann constant, are updated, and the tintds incremented according to
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1 TABLE |. Basic (h;) and secondary clusteqy, t;, andy;),
rmc=(—lnp)r—, (5)  with their respective multiplicities#; , «;, 7;, andg;) used in the
tot C, approximation of the cluster variation method. Te fraction

. does not enter the entropy formula, but is used in the energy calcu-
wherep is a honzero random number between 0 af81.  |5tion.

The sequence of lattice configurations generated in this way

is arepresentative solutioof the time evolution of the ki- M K;
netic lattice-gas model, and any system variable can be di-
rectly measured from the lattice configuration. m hq 1 oo ( 1
From the transition rates in E¢B), and from Eqgs(4) and
(5), it is possible to see that the time increment will be al- m ho 4 oo 0O (o 2
ways inversely proportional to exp(—A/kgT), and that this
term will be constant throughout the whole process as long m hs 2 0o (j 1
asT is kept constant. Therefore, for practical reasons and in
order to evaluate the influence of adsorbate interactions in m hy 2 o0 1
the reordering kinetics, the time evolution will be measured
in units of 1] » exp(~A/kgT)]. 22y hs 4 00 ¢ 2
I1l. CONFIGURATIONAL ENTROPY AND INTERNAL m h6 2 7 1
ENERGY IN THE C, APPROXIMATION m hy 4 7
The configurational entropy and the internal energy can
be directly obtained from the lattice configuration at a given m hs 2 n bt 1
instantt. The internal energy is the simplest case, and it can
be directly obtained from the probabilitigs that two near- m he 1 I:g ta 4
est neighboring sites are occupied, amg, that two next-
nearest-neighboring sites are occupi&dble )), so that for a m hio 4 I:g b 4
lattice with Ny sites the internal energyper unit site is m hy 4 n ta 9
E=2(y;4,+wW;44), (6) m hiy 4 g:g ts 4
where the binding energy term was ignored as it is irrelevant his 2 te 1
for the kinetics. m g‘g
The configurational entropy, on the other hand, relies on m hiy 4 B
using an appropriate approximation that can describe the lo-
cal order correlations of a lattice-gas system at a given cov- m his 2 n 1
erage, temperature, and interaction teimshe equilibrium
state This can be achieved by the cluster variation method m his 2 &0 1 2
(CVM) [17,18, which gives a series of cluster approxima-
tions for the configurational entropy of an infinite lattice as a m hiz 4 oO Y3 1
function of the basic cluster fractions, with the precision of
the approximation depending on the size of the basic cluster, m hig 4
their geometry and the way they are used to construct an
infinite lattice. The equilibrium state can then be found as the m hig 2 o T 1
minimum of the free energy by varying self-consistently the
cluster probabilitie§32]. In a previous work we found that m hao 1 o L2 1
the C, approximation of Kikuchi and Brusfil8] was suffi- h
ciently precise to describe tle€2< 2) ordering transition at m 21 2
half coverage by comparing to Monte Carlo simulatiph@]. h 4 .
By following the procedure outlined for th@, approxima- m 22 ' W1
tion in Ref.[18], we arrive at the configurational entropy
(per unit site as m has 2
888 hu 1

S=ks{2 ki In Qi+2i 7it; I ti—Z Biyi In'y;
metry factorsk;, 7, Bi, and;. This formula will then be
—> i In hi], (7)  used here for th@onequilibriumentropy.
i They;, q;, andt; fractions can be obtained in different
ways as geometrical sums over theclusters by considering
where thegq;, t;, y;, andh; cluster probabilities are pre- their geometries, and the same is validforin Eq. (6). The

sented in Table I, with their respective multiplicities or sym- cluster probabilities satisfy the normalization constraints
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0.8 T T T T

Zi ”ihi:Ei Kiti= > Titi:Ei Biyi=1,

and also
YitYo=X1=6.

For the cluster fractions at a given instanthe lattice is
scanned in the two perpendicular directions and each of the
2N (3X2) clusters is then recognized and counted as one
of the h; figures of Table I(accounting also for their sym-
metrieg, and theh; fractions are then obtained by dividing
the corresponding figure counts biN2», . Theaq;, t;, Vi,
andw, fractions are obtained as geometrical sums over the
h; fractions, and finall\E andS are obtained with the use of ' ' ' .
formulas (6) and (7). The direct use of Eq(7) can lead to %05 02 oa 08 08 10
errors in the entropy evaluation, as it was in fact devised for t(1/v e 2ksT)
infinite lattices, and especially in the neighborhood of the
highly asymmetricalp(2x2) orders. A numerical solution FIG. 3. Time evolution of the configuration entropy in the ab-
employed here was to calculate the entropy separately frosence of adsorbate-adsorbate interactiahs=(A4=0), in units of
the cluster counts for each direction of the lattice, and thig’ exp(—A,/kgT), for initial states in thec(2x2) (solid) and
avoids the negative values in the entropy. p(2x1) orders(dashed ling Both curves converge to the plateau

An important issue to be concerned with here is that ofS'ke=In2.
the validity and significance of the configurational entropy
(7). The entropy is a well defined function in the equilibrium ¢(2X2) order is quite faster. This comes from the restriction
state, and its derivation in R€fl8] was done by estimating that the adsorbates may only jump to empty nearest-
the number of different ways that avg-site lattice can be neighboring sites, which means that an adsorbate in an or-
built with the use of the given cluster probabilities. This dered p(2xX1) row has just two hopping possibilities,
means that an entrop$ will correspond to a given lattice Wwhereas an adsorbate in thé2x2) order has four possi-
configuration as long as this cluster is representative of ahlilities (Fig. 1), which allows a faster destruction of the
ensemble of lattices built with these cluster probabilitiesoriginal order in the initial stages. This situation is the only
(Gibbs-like description example within this model of a thermodynamically closed

This should not be very severe in our case, as we argystem, due to its constant internal energy, implying that all
dealing mostly with local reordering processes that do nothe change upon the free energy comes from the entropy.
involve mass transport. Furthermore, the entropy can always A rather different situation occurs fax;=2A4=0.1 eV,
be seen as a function that measures the degree disorder of there each of the interaction terms would individually lead
system as a function of its local probabilities or correlationsto either thec(2x2) or p(2x1) orders. This is shown in
as in the approach given by the information the¢8s]  Fig. 4 for both the internal energiéspper set of curvgsand
(Boltzmann-like description In this way, the entropy is a entropies(lower sej, where att=0 the system is posed into
consistent function of the cluster probabilities that will con-ac(2X 2) (thick solid), p(2x 1) (thin solid), or random dis-
verge to its equilibrium value as the stochastic system conerder statgdashed ling and all the curves in each set con-

verges to the equilibrium. verge to same values. It can be seen that the overall time
scale is rather larger than that of Fig. 3. Again, the conver-
IV. SIMULATION OF REORDERING PROCESSES gence from the initialc(2X2) is faster than that of

p(2Xx1) during the initial stages, for the same reason as with
The simplest case that can be studied within the procedurgae previous case, but a direct comparison for the curve with
outlined above is the disordering process from an initiallyinitial random order cannot be made.
ordered state to a final random state, due to the absence of The time derivatives of the curves in Fig. 4 were obtained
interactions between the adsorbatés=A4=0). In Fig. 3  with the use of a Savitzky-Golay smoothing procedi2€]
we show the convergence of the entropy towards itsand are presented in Fig. 5 for each of the initial ordére
maximum value oS=kg In 2, starting from the two ordered solid lines correspond here to the internal energy, and the
states shown in Fig. 1c(2%2) (solid line) and p(2Xx1) dashed lines to the entropytt can be seen that conditidt)
(dashed ling for a system at half coverage. For this and allis fulfilled, which can be interpreted as if the change in in-
the following figures in this work we use, unless other-ternal energy “pulls” the change in entropy. For the larger
wise statedNg=400x 400, #=0.5, andT =300 K, with the  values oft, when the system is close to equilibrium, the two
Boltzmann constankg=0.8617< 10" eV/K. The time is curves practically superpose and follow the same oscilla-
measured in units of Iy exp(—A/kgT)], as previously men- tions, satisfying thus conditiori2). The oscillations arise
tioned. The code was written in PASCAL language and wadgrom the stochastic processes involved here, and are ampli-
run on Sun ULTRA 1 workstations. fied by the limited size of the lattice. Note also the differ-
It can be seen that both curves show saturationlike behawences in vertical scales for the three cases.
ior for S, but noting that the convergence from the initial An important case to be considered here and frequently
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FIG. 4. Time evolution of the entropflower se} and internal
energy functiongupper setfor A;=0.1 eV andA4=0.05 eV, for
the lattices at initial states af(2x2) (thick solid), p(2x1) (thin
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the subsequent figures.
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FIG. 6. Time evolution of entropy from an initigl(2X 1) state
for A4=0 andA;=0.1 (solid), 0.2 (dashed and 0.4 eV(dotted
line), with closely matched curves that converge to t{@x2)
ordered state. The thick solid curve shows the results Xpr
=0.05 eV, which converges to a parti]2x 2) order.

[3-8]. In Fig. 6 we present the entropy evolution for systems
with an initial p(2xX 1) order and lateral interaction energies |eading to a slightly different equilibrium state, where the

of A;=0.1 (solid), 0.2 (dashegl and 0.4 eV(dotted ling,
with A4=0 (N4=800x800),
c(2x2) equilibrium order[16]. A further curve withA,
=0.05 eV is addedthick solid line, with Ng=200x 200),

0.01

0.00 [

-0.01

-0.02

-0.03

-0.04
0.008

0.006

0.004

0.002

TdS/dt, dE/dt

0.000

—0.002
0.004

0.003 |5

0.002

0.001

0.000

-0.001

FIG. 5. Time derivatives of the entrofgolid) and internal en-
ergy functiongdashed lingsof Fig. 4, for the randomly disordered,

that correspond to the

random

c(2x2)

pizx1)

c(2X2) andp(2x1) initial states(top to botton).

c(2X2) order is present but not dominant as in the other
curves[34]. The time scale in the time axis is logarithmic,
accounting for the fact that the convergence to ¢f2x 2)
equilibrium state looks like a long-term power-law decay,
and allowing also one to detail the processes in their initial
stages. It can be seen that the tho§2Xx 2) curves practi-
cally collapse into a single one in both the rising phase, from
the original zero-entropy state to close to the maxima, and
also in the decay phase towards zero entropy, except for their
slightly different maxima and some variations for larger
times, that are related to the maxir@an inset is included to
detail this region The breaks at=5x 10° are related to the
finite size of the lattice. The fourth curve grows with the
others in the initial stages, but then arrives at a slightly
higher entropy maximum, and finally converges to its own
equilibrium state.

The relative insensibility observed in the curves in Fig. 6
to the magnitude of the interaction energies implies that the
order destruction and reconstruction mechanisms acting here
depend principally on adsorbate jumps with equal transition
rates, as a composed process will usually proceed with the
slowest rate. From Eq3) this means adsorbate jumps to
equal and lower energy positions. The initial rise in the en-
tropy corresponds to the destruction of the original
p(2x 1) order, and Fig. (&) describes the probable mecha-
nism occurring at the very initial stages. The simplest events
given here are andb, both with an energy difference of
—A, and thus a transition has a rate wexp(—A/kgT), and
their reverse processes have the ratexd —(A+A)/kgT].
After the jump ina, the adsorbate may follow the corridor
upwards €) or downwards €'), with respective energy dif-
ferences+ A, and +2A, (onceb occurred, which means
that it is in a trapped position, and also avoiding jumps to its
neighboring empty positions. The single occurrenceaof
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FIG. 7. Probable mechanisms for the common behavior of the (b)
curves in Fig. 6, corresponding to the initial rise in entropy due to 075 |
the destruction of th@(2Xx 1) order(a) and the homogenization of
differentc(2X2) domains(b). The black and white circles repre- -
sent, respectively, the occupied and empty sites, and the crosses * 050 |
represent occupied sites after a given event has occurred. Explana-
tion for the mechanisms is given in the text.
0.25 |
does not enhance the possibilities of eveértb occur, but it
makes much more improbable for its reverse process, and in 00 L o S
this way a “checkerboard” order is rapidly formed and sta- 1071071010 1010 10 10710
bilized in the local neighborhodd3]. This basic mechanism t(1v e ~VeT)

is also valid for the nom(2X 2) case, but its further diver-
genge means that in this case'd(éx 2) domalns are not so (solid) and entropy functiongdashed lingfor the case\|=0.2 eV
readily formed and stable as in the combined curves. of Fig. 6. (b) Time evolution of the cluster probabilities;t, (or

The c(2X2) state .is twofold degeneratg, and this MeaNSs, t_ dotted, 74t5 (solid), and 74t (dashed lingfor the same pro-
that the entropy maxima represent the points where there igss aga).

also a maximum competition between the two different
modes, whereas the steady decay of entropy implies that orfable |, for the same run. Thig andt, figures represent,
of them is gradually becoming dominant. A possible mecharespectively, thgp(2X 1) andc(2X2) orders, while the,
nism for the decay phase in tleg¢2< 2) curves is shown in  (andts) figures represent the immediate disordering state. It
Fig. 7(b), where a “block” of the minority mode is sur- can be seen that there is a crossover ot frendt, curves at
rounded by the dominant oridashed squajeThe reorder- around the entropy maximum, after whith is dominant,
ing process should occur with more probability at the bor-and also that the intermediate statgsandts have a small
ders, where eventas andb andd may occur quite rapidly, maximum at exactly this point, but that tip¢2x 1) order is
since they involve no energy differences, but evenhay  still present to some extent up to very large times.
occur with the highest rate only afteror d happened, and A final case of interest, related to the situations presented
any of these will also help to stabilize the lattice further on.above, is the inverse case, i.e., the evolution from an initial
The whole process is in fact independent &f, and the c(2X2) state towards th@(2x 1) order[9,11]. The time
instantaneous decay rate will depend on the total boundargvolution of the entropy is shown in Fig. 9 fax;=0.1
perimeter between the two clusters, and hence the power-laggolid), 0.2 (dotted, 0.3 (dashefl and 0.4 eV(dot-dashed
behavior in the decay pha$Eig. 8@&]. Of course, we may line), andA4=0, corresponding to equilibrium(2x1) or-
not ignore the diffusion of adsorbates along the defects of theers. A further curve withh4=0.05 eV is also addecthin
c(2x2), until they are “annihilated” at the bordef$,8], solid line), for comparison, but corresponding to a non-
and this procesis dependenbn the interaction energies, but p(2x1) order in the equilibrium. The first four curves grow
it is in fact a complementary process, that does not contributengether from the initial zero entropy up to a common maxi-
directly to the lattice order as measured by the entropy funcmum att=0.2, and then decay yet together urtti15,
tion. The inclusion of a diagonal term might not be signifi- where they start to diverge due to effect of the different
cant, as far ad 4<<0, as can be inferred from Fig. 7. interaction energies, showing that further reordering be-
Figure 8a) presents the results for the entrofashed comes more difficult the larger the magnitude of the interac-
line) and internal energysolid line) for the case\|=0.2 eV  tion energies is, and they are expected to converge to the
of Fig. 6, and a logarithmic scale was used in both axes iordered state in further timgsut of scal¢. The partial co-
order to detail the long-time decdthe divergence at the end incidence of the curves means, roughly speaking, that three
is a size effegt Both curves run approximately parallel for different ordering phases are present here, and where the first
t=10, with a power-law-like behavior at™[35]. It can be  two are energy independent. The np(2x 1) curve has an
seen from this plot that conditiofi) is fulfilled. Figure &b) identical behavior up to the common maximum, but then
shows the time evolution of the fractionst, (also 7sts,  falls to its own equilibrium state. Just to note, a main differ-
dotted ling, 75t (solid ling), andr4t, (dashed linggiven in  ence between the(2X2) andp(2x1) orders is that the

FIG. 8. (a) Power-law-like behavior for the internal energy
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first one is twofold, whereas the second one is fourfold de
generate, and therefore a much slower convergence might b ‘ (©)
expected.

A possible mechanism for the initial disordering phase is FIG. 10. Possible mechanism for the ordering kinetics in Fig. 9,
shown in Fig. 10a), where eventa can occur as a rapid corresponding to the destruction of the initigRx 2) order(a), the
process(energy difference of- 4Ad)1 but its inverse event homogenization of different domains of tpé2x 1) order with the
(a') as a very slow one. Onaehas occurred, both andb’ same orientatior(b), and finally the homogenization of domains

become less probable, with an energy increase Af;, but with different orientation(c). Mechanism(c) is dependent on the
favoring ¢, and thUS' allowing the formation of’ local magnitude of the interaction energies. The symbols used here are

. . . the same as in Fig. 7.
p(2x1) domains, without an explicit energy dependence. n g

The next process should be the homogenization between do-
mains differing by a translational phase, as shown in tmart
Here, events, b, andc will occur with the same rate, even  In this work we have analyzed the reordering kinetics of
though event is not favorable to the order reconstruction, lattice-gas systems with nearest- and next-nearest-neighbor
but once eventc occurs, for instanced (that otherwise interactions between adsorbates on a square lattice and sto-
would be similar taa) is now less probable{ A), and thus  chastic hopping(Kawasaki dynamigs from initial pre-

e is favored(zero energy A combination of the mechanisms defined ordered states towards the equilibrium, using a dy-
of Figs. 1Ga) and 1@b) should be responsible for the de- hamic Monte Carlo procedure, so that a “real” time can be
struction of the originalc(2x 2) order and the buildup of evalqated from t_he local transition rates and the number of
small p(2x 1) domains, through the maxima of the curvesPOssible events in the system at each instant. From the sys-

and until they start to diverge &t=10 [noting that the non- tem configuration we can calculate directly the internal en-

p(2X1) curve starts to diverge after their common maxi- 9y and the configurati.on.al entropy With.in.tﬁg gpproxi-

mun] mation of the cluster variation method. Within this approach
’ the time variation of both state functions can be directly

The divergence of the curves after their breaking pOIntassessed and thus used to characterize the ordering conver-

means that the reordering will now start to depend strongly ence. The lattice-gas model serves thus as a simple system
on the value of the interaction energies, and it is consistentl here.the reordering kinetics can be followed and character-
slower with increasing energy. The reordering _Procesg;eq by the state functions in nonequilibrium. From a simple
should now overcome the mismatch between domains of d'férgument on the Helmholtz free energy, we find that the
ferent orientation, as shown in Fig. () where we may gecrease in the internal energy should always be lower than
assume that the domain at the left will expand towards thgne decrease in entropy, which is confirmed by the simula-
right. In the simplest mechanism that can be visualized hergjons, The discussion here was limited to repulsive energies
eventa may occur with a rate-exp(—2A4/kgT), and it may  and half coverage, which were used due to richness of phase
be followed by a second jump, that will effectively extend  transitions that this domain can present in equilibrium
the left domain with the maximum rate. Another mechanism 20,21].

is given by eventg andd, but with much slower rategen- It was shown that the reordering kinetics varies strongly
ergy differences of-4A4 and —Ay). with the interaction energies, and that the reordering path

V. CONCLUSIONS AND FINAL REMARKS
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may depend more on the initial and final orders of the pro-as discussed for the(2x2) case, the diffusion within the
cess than on the magnitude of the interaction energies thenerdered domains is important as a complementary process
selves. From the entropy function and the order parametefsr “defect” transportation that does not necessarily change
we can also identify different ordering phases correspondinghe order measure, while the reordering process itself will
to the destruction of the initial order and the buildup of theoccur at the borders of the domains. The cases studied here
equilibrium state. Two extreme cases presented here aiacluded well defined ordering states, like tbg2x2) and
those where the system evolves fromp@Xx 1) state to- p(2X1), that are perhaps rather “artificial,” but they allow
wards ac(2X% 2) state(Fig. 6), and the opposite procedSig.  the discussion of some possible mechanisms for the kinetics
9), where we can perceive an “insensibility” of the entropy of order formation and destruction, and how these will be
function to the magnitude of the interactions as long as thexpressed by the state functions.
equilibrium state is unchanged, and the different ordering- Even though the analysis presented here is limited due to
disordering phases are well characterized in the entropthe finiteness of the systems studied, its related fluctuations,
variation. At this point a comparison with Smith and Zang-and also on other factors like the definition of the hopping
will [13] is relevant: they observe in their calculations for rules and the simplicity of cases studied, the Monte Carlo
ordering processes that the short-range order converges vepyocedure outlined above can be fairly extended to more re-
rapidly to aquasiequilibriumstate, after which the long- alistic cases for the reordering kinetics of an adsorbate layer,
range order converges exponentially and both orders relax tand also its relation to other nonequilibrium processes where
their equilibrium state. This can be interpreted in our systentompeting time scales are involved, like adsorption, desorp-
as the initial formation of the local domains and their subsetion and surface reactions, or external effects like varying
guent “annealing” into the final order. The model of Ref. temperatures or applied external fields.
[13] is, despite its elegance, limited by the use of a qua-
sichemical approximation, that can only account for local
correlations and cannot describe properly #{@x2) and
p(2x 1) ordered stategl6], and thus the advantage of the  The author acknowledges financial support from the Fun-
Monte Carlo method. On the other hand, entropy was chosetia@o de Amparo aPesquisa do Estado de &#&aulo
as a single function that will characterize the order of the(FAPESRP (Brazil), Project No. 96/06416-7, and the compu-
system as a whole. tational facilities accessible to him at the Institute for Com-
The reordering kinetics cannot be directly related to theputer Applications 1 of the University of Stuttgart. The au-
diffusion kinetics in the equilibrium, but this does not meanthor is also very grateful for the early encouragements and
that diffusion is absent or unimportant for reordering. In fact,critical comments by Claudio Scherer and Stefan Luding.
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